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SOME COMMENTS ON THE TIME-CAUSAL CHARACTERISTICS

OF LEAKY AND SURFACE WAVES

L. Lewin

Introduction

An excellent exposition of the nature and properties of leaky waves has
been given by Hessel(l), including an extensive bibliography to which the
interested reader is referred. As is now well-known, the field increases
exponentially in the transverse plane at the same time that it attenuates
axially. There is a certain angle, known as the crifical angle, which
defines a critical cone within which the radiation condition is satisfied.
Outside the critical cone the field would increase on all directions, and
it is clear that the leaky wave, in isolation, cannot exist as a realistic
entity. Nevertheless it is a convenient abstraction with considerable use
in leaky-wave antenna design. From a practical point of view we can
distinguish three regions: a) very close to the source, where near-fields
predominate, b) an intermediate region in which, close to the guiding ;
structure, the field is predominately given by the leaky wave, and c) very
far from the source, where the leaky wave has been exponentially attenuated
so much that the source radiation (as modified by the presence of the
guiding structure), with its inverse distance variation, dominates. On the
critical cone the leaky wave merges with the source. radiation and a clear
distinction between them cannot be made. Outside the critical cone the

actual radiation is that from the source, though the leaky wave, as a

mathematical idealization, would, of course, completely dominate. A like set




of three axial regions can be distinguished in an open lossy transmission
line, like microstrip.

Somewhat different conditions prevail for the fields of a lossy
dielectric-coated line, such as the Goubau linecz). The wave is a slow
wave, and in the absence of losses the field is radially attenuated. But
to provide the energy absorbed in the lossy case the radial characteristics
also involve an incoming radial wave feature, apparently in contravention
of radiation requirements of outgoing waves at infinity. In a discussion

3)

of this aspect it was indicated that the problem arose only because the
surface wave was considered in isolation. If the radiation from the source
is taken into account the surface wave merges away from the line with the
source radiation, which takes over and is out-going sufficiently far from
the line. Although there is no critical cone in this case the situation

is not unlike that of the leaky wave in that the surface wave merges with
the source radiation, which takes over at large distances and satisfies

the radiation condition at infinity.

The question of whether a leaky wave is a ''genuine" mode of a system
is in part a semantic one. Obviously it can exist only in a limited space
region because of the radiation condition at infinity. But one can also
ask whether it is physically real in another sense - does it satisfy time-
causal conditions? If a wave is switched on, does the leaky-wave component
appear with a time-transient within the light-cone, or is there a precursor

outside the light cone? In either case, can this be discerned from the

propagating properties only of the wave? Do the space-varying characteristics

imply also the -time-characteristics?  One would suspect so, though no such
relationship appears to have been reported. The problem is complicated by

a further feature of the leaky wave; its characteristics are frequency-
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dependent. In particular the critical angle approaches zero at high
frequencies. Since all frequencies are developed when switching on there
is a real problem in sorting out what constitutes the leaky mode during
the initial period. As already mentioned, the leaky mode cannot exist :
in isolation and relating it to a source is essential.

In the present study the matter is examined from the point of view of
a realistic system. A source and surface-wave structure is examined first
under harmonic excitation, and the surface wave component is extracted by
inspection following a contour deformation valid within the critical cone.

This is sufficient to enable the surface wave to be regognized and its

amplitude, as a function of frequency, to be determined in relation to the
excitation. A Fourier-time analysis, on the surface-wave component only,
is performed and the transient/precursor properties extracted.

It is found that both the leaky-wave and the Goubau-wave, in the
example treated, are accompanied by a precursor outside the light-cone,
so these waves, in isolation, do not satisfy the time-causal relation.
What the significance of this may be is outside the scope of the present
study. It does appear, however, that this is possibly a general property,
and somehow might be deducible more directly for any mode not satisfying
the radiation conditions, without having to make reference to a particular

source problem.

1. Surface Wave Generation

In order to provide a realistic generation process, we consider a
symmetrical center-fed cylindrical antenna of infinite length with a
suitable surface impedance loading. The generator is located over a short

distance 26 , where § can be taken later to zero since no divergencies




arise from using a §-function generator in this problem. The arrangement

is shown in figure 1 and we define

e
[}

21r/Ao = wb/c (free space propagation consant)

2r/A  (medium propagation constant, differing from ko by j

=
]

possessing a small loss-factor. We can put k = koei with i

€. 1 in the limit of no loss)

£
L]

angular frequency of the wave.

(uoleo)* (impedance of free space)

(Al
(]
n

[
L]

(uole)* = co/eri (impedance of the medium)

[¢]
]

= (uoso)‘* (light velocity in vacuum)

N
]

surface impedance of the cylindrical surface.

-

For an inductive surface, Zs should vary proportional to Wg and for a

capacitive surface inversely proportional thereto. Thus, using Zo for }

normalization, we take

Z
s

jkocoL (inductive surface) (1)

Z
]

-jg /K C (capacitive surface) 2)

L and C are frequency-indépendent parameters that determine the strength

of the loading; they have the dimensions of length. Loading with inductance

gives rise to a leaky wave whilst capacitive loading leads to a Goubau wave.
We shall examine first the properties for excitation by a time

harmonic wave with time vector e+jq;. The electric field component Ez

can be taken as a Fourier integral of elementary cylindrical waves in the

following form to satisfy the radiation condition as p + =

e, = 4P Gore I @)da 3)
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The variable a is real, F(@) is to be determined, and B is given by 5

8 = (kz..qz)i‘ ~ -jlal for '0.' >> ]kl (4) i

There are branch-points at a = *k, and the integration contour is shown in
figure 2.

. The above form ensures that the radiation condition is satisfied for

large p .

At p = a, the wire radius, we need

tm
+
o~
=~
"

0, |z| > 6
()

-V°/26 » |z] <8

The voltage Vo of the generator is arbitrary, and it is convenient to
give it the value -2nz/jk to avoid unwanted constant factors later on.”

The form of He follows from Maxwell's equatiomsand is

-

Hy = Gk/T) _Ls'lul(z) (8ore I %%E (0)da 6)

Writing, for a moment, (1) and (2) in the more general form Zs = jcox,

the condition (5) can be written

= f F)e 3% 1 ga) - kxe 1% Ba)/z8lda = me/iks , |z < 6
l . ™)
0, |z| >

The solution of this integral equation is

.Actually the second equation should be written

E,+ZHg = -V /26 + (ZHg), o » lz] <8 (5a)

where it is assumed that the generator current, proportional to Hg, is

constant over the short range 0 < |z| < §. However, this form only affects

the arbitrary constant multiplier that enters into the problem and is not

§ B needed unless the field is to be referred to an actual generator. And in

LS such a case the effective value of Z_at the generator surface would also need

A ) to be known. The effect of the addifional term on the right of (5a) becomes
negligible as § + 0 so that (10) is in any case correct for a §-function generator. |

H O # A Vi A ¢ et s T o o 4
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The deformation is permissible only within the critical cone for the

P Ga) -k iy /e < ] st/

(8)

(z/3k) S22

Substituting into (6) gives

ad ¢

] ©®
Lo %) (ga) - (Px/k JHP) (8a)

.lm Hfz)(Bp)e-Jaz sin af do
He-

Convergence of this integral does not require the presence of the factor ]
sin ad/ad , so it is convenient at this point to take § = 0 and (9)
simplifies to ;
» 1) (Bp)e % 4o i
(10)

"

Lo 882 @a) - Px/k JHP) (8a)

We shall work with this form in the rest of this study. It gives the

magnetic field radiated from and guided along a §-function-fed, symmetrical,

cylindrical, surface-impedance structure.

2, Surface Wave Component

If the denominator of the integrand in (10) is equated to zero, there
is found a root a = %, which gives rise to a discrete wave conducted along
the antenna surface. By deforming the contour” as in figure 3 we obtain a

residue at the resulting pole of amount

(2) Jegz 2) 2 2) -1'“
Hy (surface wave)™ (Byp)e 2mj Residue [BH “/(Ba)-(k"X/k )H "’ (Ba)] -

-ja_z -
- (-2mig Ja 0P g pre ~ ° 1P ) 1-p)-1{P @) (e-p/021 7!

aa1)

leaky wave: this is sufficient to locate uniquely the leaky wave component.

It is assumed that z>0; results for z<0 are obtained by replacing =z
by -z, because of the symmetry.




where
= 2 2.4
By = &k~ - ao)
. £=Boa
= 12
. p=Kk Xa/ko

Of course, (l1) does not represent the major part of the field except in the
region where the surface wave dominates. As discussed earlier, for 2z large
enough the surface wave is attenuated to a value smaller than the direct source

radiation so that in that region the remaining integration along the branch

cut represents this radiated field. But in the region where it is significant,

(11) represents the surface wave, with amplitude given by the residue §

expression. It involves a surface impedance parameter p, and in view of
the presence of the factor ka we can assume that this parameter is small,
at least for small wire radius and light loading.

The pole location a, is given, via g = Bo3» s a root of the equation

EHC(,Z) ) = pﬂl(z) (€) (12)

An approximate value of g for small p can be found by arguing as follows:
the equation cannot possess a root for large £ since H{z)(g) ~ jHéz)(E) for
|g] >> 1. For £ = 0(1) the right hand side is 0(p) whilst the left-hand side
is 0(1). Hence any root must occur for small £. Since Hfz)(g) varies as

1/¢ for small § , whilst Héz)(g) is logarithmic, a value of £ very

approximately of order p& must exist. By expanding the Hankel functions

for small £ we get the approximate equation

g2 [jme+ 2y+210g(E/2)1(1-p/2) = -2p (13)




For p small and positive (13) possesses a root close to

2 3
% = [ TozGlp) 2 In (14)

This expression possesses a positive imaginary part, so that the exponential i
@) . -j&p/a .

factor in Ho' (Bop), i.e. e is increasing with p; a known

property of a leaky wave on an inductive surface. For p small and

negative (capacitive loading) the value of Eo is

- s -2p ¥
S = [log(-z/p) —=d 1)

This gives the expected radial attenuation of a Goubau surface wave
over a capacitive surface. If the capacitive loading is slightly lossy,

say due to the use of a dielectric with loss tangent §, (15) becomes

. .iC |-2p LI
& = AN log]-Z/pj[J-Zy-i-jG] e'JG/2 (16)

The effect of the loss is to give a small negative real part to Eo’

and since the asymptotic form of the Hankel function in (11) involves

exp[-jgop/a] the loss gives rise to an incoming radial component to the

wave, a well-known property of the Goubau wave.

It should be stressed that the approximations (14) and (15) can be

used only if p is small enough; otherwise resort must be had to the basic

equation (12). However, the only use made here of these relations is to

note that there is indeed one root existing when p is small - the exact

value is of no special consequence. (When p is large the only root is

& ~ jp; although the properties of (12) in the whole complex plane have

not been thoroughly explored it would appear that there is one, and only

one, root existing for all relevant values of p.)
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3. Time-Causal Properties: Leaky Wave

A wave of angular frequency « = switched on from zero to unit amplitude

at t = 0 can be expressed by

| ® ejwt
omqn | sl an

The effect of the small positive quantity A is to place the pole at
w=w + jA just above the real axis. For t > 0 convergence of the
integrand permits the contour to be closed by the semi-circle at infinity
in the upper half of the complex w-p}an:, giving a single residue at

jw

°© as A=+o0. Similarly, for

W= w o+ jA , resulting in f£(t) = e
t < 0 the semi-circle needs to be in the lower half-plane for convergence.
There is no pole there, so f(t) = 0 for t < 0. Clearly poles in the
upper half-plane are associated with realistic transients or oscillations,
whilst singularities in the lower half-plane would be associated with non-
causal precursors. It is our aim to use (17) in conjunction with (11) to
see where (11) - taken in isolation - exhibits singularities in the complex
m-plane,'and hence to determine the causal properties of the leaky or
surface waves. To do this it is necessary tc restore the missing time
vector erot in (11), replace w, by w everywhere, and then apply

' (]
to it the integral operator of (17), i.e,;;'l.imf )4 .
}A_,o_“m-wo-JA

(Note that w is contained implicitly in (11) through k° = w/c.)

The effect is that of an isolated leaky-wave of angular frequency W,
switched on at t = 0. It follows that the singularities of (11), qua w,
determine the time-causal properties of the leaky wave. In particular,

any singularities in Im w < 0 will give rise to non-causal properties.




| 3
1 1
In order to determine the general nature of these properties, it is
not necessary to carry out the indicated integrations; it is sufficient to
locate the singularities of (11). Clearly there are three possible
locations to be examined; they are at i) Bo = 0 where the Hankel functions
exhibit a branch-point, ii) a, = 0, where (11) exhibits a pole, and iii)
at roots of Héz)(ﬁ)(l-p) = H{z)(é)(g-p/E) . We shall examine these roots
in turn, bearing in mind that they must also satisfy (12), which locates
the pole giving rise to the wave. In other words we have sets of two

equations to be solved simultaneously, (12} in conjunction with each of the

three preceding conditions in turn.

1}. By = 0. Since, by definition, £ = Bo2 and a # 0, By = 0 requires
g = 0, and this is not compatible with (12). Hence the position Bo = 0 does

not give an acceptable location of a singularity in the w-plane.

R R N

2). @ = 0. From the definition of § in terms of o _, this condition leads
(+] o o

to g= ka and (12) becomes, on using (1) for Zs R
HD (ka) = kLH(?) (ka) (18)

If we put k = w/c (the distinction between k and ko is of no relevance

'; here), and y= -j¢ the equation reduces to
K°(¢a/c) = (¢L/c)K1(¢a/c) (19)

;; : Now as ¢~*0, l(o-> o whilst ¢K1 is finite. Hence the left-hand side of

e

(19) exceeds the right-hand side for small ¢ . As ¢ + « both K° and Kl

go to zero, but their ratio + 1. Due to the presence of the factor ¢ ,

the right-hand side exceeds the left for large ¢ . Both functions in (19)

»3"‘Q are monotonic. Therefore there is one, and only one, real, positive value

" of ¢ which satisfies the equation. (It is not known for certain whether
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there are additional complex values. However, for k large the
asymptotic relation Hfz)(ka) ~ jﬂiz)(ka) leads to the single root

W ~ -jc/L, and there is similarly only a single root, found from the small
argument expansions, when k is small. It therefore seems very likely
that there is indeed only the one root. But the presence of further roots
would not alter the subsequent conclusions). 4
3. 8P @) a-p)= HP (€) (E-p/E). This has to be solved simultaneously
with (12), i.e. @) = i €), with p = k’La. Eliminating the
Hankel functions from this pair of equations gives Ez = 2p-p2, or

p=1- (1-52)* . Substituting into (12) gives

M@ = 0 - a-ghim @ (2)

If we put & = -jn the equation takes the form

K,(n) = KO(n)[(hnz)* + 11/n (21)

The only root of this equation appears to be at n = «, where the two

sides become asymptotically equal. There is no real root, and apparently
no complex root either, although without an exhaustive search it is
difficult to be quite certain. However a finite root of (21), if it should
exist, will not affect subsequent conclusions.

The time-causal properties are determined by the existence of a root
coming from a, = 0. This gives w = -j¢ with ¢ real and positive, and
determined by (19). Since this root is in the region Im w < 0 it gives
rise to a time precursor varying as e¢(t-p/c) for t<p/c. The meaning

of this conclusion is discussed further in section 5.
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4. Time-Causal Properties: Goubau Surface-Wave

The analysis proceeds almost exactly as in section 3 except that

koL is replaced by -l/koc. Instead of (18) we get

(2) )
kCH " (ka) = - H,"" (ka)

in which ¢_ can now be replaced by 1 and k by k_.
T o

Writing o= koc = -j¢ the equation reduces to

oK (pa/c) = (c/CK, (pa/c) (23)

For ¢ small the left-hand side is less than the right, whilst the opposite
is the case for ¢ large. Both sides are monotonic, and there is therefore
one real root for ¢ . Since w = -j¢ we again see that there is a non-
causal precursor, exactly as in the leaky wave case. Only the value of ¢
is different.

The consideration of a possible further root follows the identical
analysis of section 3, since (20) is not affected by the change, though the
related value of p is different. Accordingly we find that the Goubau
wave behaves quite similarly to the leaky wave in its time-causal

characteristics.

S. Discussion and Conclusions

Both the leaky wave and the Goubau surface wave, taken in isolation,
i.e. without consideration of other fields that would be present when
generated by a finite source, appear to contravene the radiation condition
at infinity; the former because of its increasing fields outside the
critical cone, and the latter because of its incoming character to supply

the power lost on the guiding structure. It can therefore be asked in
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what sense these modes are genuine ones. The present study shows that,

in the particular source example considered, they are non-causal. Is

this a general property or one predicated on the particular feed system
3 used? If it is a general one, then it would be expected that it could !
be deduced from other considerations, e.g. the form taken by the propagation i
factors. But apart from not satisfying the radiation conditions these ;
factors do not seem to demand any particular time structure, though it may
be speculated that there is a connection. However, the present method
indicates one feature that may be of a general character. The non-causal

nature comes from the pole at a,= 0, the presence of the latter arising 1

S

from a differentiation of 8, since 38/3a = -a/B . The 8 appears here
from the radial term via ng)(aa), and since the source matching always

occurs at some value or values of p, a boundary condition involving 8

seems inevitable. Hence we would always expect a pole at a, = 0, whatever ;

other features might be in evidence. This pole leads to a space variation

tJez ¢ e'Jkp/p* for large p , all z. In the present

from Héz)(sp)e
example this term is damped for large p, when w = -j¢. If it is physically
meaningful to require that this term always be damped then we require

k=e ¥ ith 0<p<nm . This leads to a pole for w in the lower-half plane,

and hence to a precursor varying as ew(t-p/c) for t<p/c, i.e., outside

y] the usual light cone. This result might possibly be related to the
! radiation condition in the following way. A decaying pulse e't/T can be

represented by a real spectrum via the equation

) e t/T . 2T j cos wt wt 24)
.2; 0 l'tw T
;'.f Since the fields of the leaky wave increase exponentially in the radial

direction for real frequencies the relation (24) would indicate a similar

property of a decaying pulse. The corresponding angular frequency in cowplex




notation would be positive imaginary, or k « e+3¢, Y =1/2, To get a

physically meaningful decaying radial field it would be necessary to
reverse the sign of y, leading to the criterion hypothesized above.

The conclusion to be drawn from this somewhat speculative assessment

is that isolated surface modes of an open system are not time-causal.
The total. field, of course, is time-causal, and this throws some doubt on
the validity of working with isolated surface modes, their utility in
antenna design notwithstanding.

It might be objected that in the above reasoning the loca.tionao =0
is always outside the critical cone, and therefore in a region of no
practical interest for the leaky wave. Neither is it encountered, for
real frequencies, with the (slow) Goubau wave. The trouble here is that
the structure of these waves is frequency-dependent. The Goubau wave
extends to infinity at low frequencies whilst the leaky wave has a critical
angle of zero at high frequencies. Since all frequencies are generated by
switching on it becomes unclear how the transient characteristics at
initiation of a leaky wave in isolation should be interpreted. In practice,
of course, the total field builds up in a sensible way and '"as the dust
settles," the leaky wave aspect emerges in that region where the field can be
meaningfully interpreted in terms of it. It is only because of a wish to
deal with the isolated mode that the problem arises. One needs to know,
for example, whether a predicted mode is a genuine characteristic that
can be used for transmission of information, or is merely a mathematical
artifact with no real useful properties. It is hoped that the results of

this study may eventually throw some light on this,.
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Figure Captions

1. Antenna and Source

2. Contour in the a- plane

3. Deformed contour in the a-plane. H
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